INDUSTRY Linear fixed output

Driver LCI 75W 100-700mA 250V flexC NF Ip EXC3 (INDUSTRY)

excite series non-SELV

Product description

- Constant current built-in Driver for LED,
 particularly suitable for industrial applications in tough
 environments with elevated ambient temperatures such as
 cold warehouses or factories
- Adjustable output current between 100 and 700 mA
- Max. output power 75 W
- Suitable for mains voltage peaks (burst/surge) up to 4 kV
- Expanded temperature range of -40 ... +80 °C
- Nominal lifetime up to 120,000 h (at ta 65 °C)
- 8 years guarantee (conditions at www.tridonic.com)

Housing properties

- · White slim metal casing
- Type of protection IP20

Interfaces

- Near field communication (NFC)
- Terminal blocks: 45° push terminals

Functions

- Adjustable output current in 1-mA-steps (I-SELECT 2 resistor or NFC)
- Intelligent Temperature Guard (overtemperature protection)
- Intelligent Voltage Guard (overvoltage and undervoltage monitoring)
- Protective features (overtemperature, short-circuit, overload, no-load, input voltage range)
- Suitable for emergency lighting acc. to EN 50172

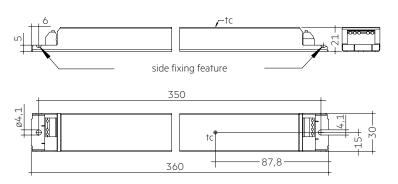
Benefits

- Flexible configuration via companionSUITE (NFC) or I-SELECT 2
- Application-oriented operating window for maximum compatibility
- Extended vibration damping
- Increased safety through robust design and advanced testing under extreme test conditions
- High reliability through the selection of exclusive components

Typical applications

• For linear/area lighting in industry applications

Standards, page 4


IP20 ♥ **EL[[]] ((() & (€)** RoHS)

Driver LCI 75W 100-700mA 250V flexC NF Ip EXC3 (INDUSTRY)

excite series non-SELV

Technical data

Technical data	
Rated supply voltage	220 – 240 V
AC voltage range	198 – 264 V
DC voltage range	176 – 280 V
Mains frequency	0 / 50 / 60 Hz
Overvoltage protection	320 V AC, 48 h
Typ. current (at 230 V, 50 Hz, full load) @	360 mA
Typ. current (220 V, 0 Hz, full load, EOFx dimlevel) [©]	380 mA
Leakage current (at 230 V, 50 Hz, full load) ^① ^②	< 500 μΑ
Max. input power	81 W
Typ. efficiency (at 230 V / 50 Hz / full load) [®]	93 %
λ (at 230 V, 50 Hz, full load) ^①	0.95
Typ. input current in no-load operation	35 mA
Typ. input power in no-load operation	0.65 W
In-rush current (peak / duration)	5 A / 1,000 μs
THD (at 230 V, 50 Hz, full load)®	< 10 %
Starting time (at 230 V, 50 Hz, full load) [®]	< 0.5 s
Starting time (DC mode)	< 0.5 s
Switchover time (AC/DC)®	< 0.5 s
Turn off time (at 230 V, 50 Hz, full load)	< 30 ms
Output current tolerance ^{① ⑤}	± 3 %
Max. output current peak (non-repetitive)	800 mA
Output LF current ripple (< 120 Hz) ^①	± 2 %
Output P _{ST} ^{LM} (at full load)	≤ 1
Output SVM (at full load)	≤ 0.4
Max. output voltage (no-load voltage)	300 V
Mains surge capability (between L – N)	4 kV
Mains surge capability (between L/N – PE)	4 kV
Surge voltage at output side (against PE)	4 kV
Type of protection	IP20
Lifetime	up to 100,000 h
Guarantee (conditions at www.tridonic.com)	8 years
Dimensions L x W x H	360 x 30 x 21 mm

Ordering data

Туре	Article number	Packaging carton	Packaging pallet	Packaging Weight high volume per pc.	
LCI 75/100-700/250 flexC NF lp EXC3	87500919	10 pc(s).	180 pc(s).	1,260 pc(s). 0.302 kg	<u>—</u>

Specific technical data

Туре	Output current ^{® ®}		Max. forward voltage	Max. output power	,, ,	Typ. current consumption (at 230 V, 50 Hz, full load)	9	Ambient temperature ta max.	I-SELECT 2 resistor value ⁴
	100 mA	100 V	250 V	25.0 W	28.1 W	129 mA	90 °C	-40 +80 °C	open
	150 mA	66 V	250 V	37.5 W	41.3 W	195 mA	90 °C	-40 +80 °C	33.33 kΩ
	200 mA	50 V	250 V	50.0 W	54.2 W	247 mA	90 °C	-40 +80 °C	25.00 kΩ
	250 mA	40 V	250 V	62.5 W	67.0 W	300 mA	90 °C	-40 +80 °C	20.00 kΩ
	300 mA	40 V	250 V	75.0 W	80.0 W	354 mA	95 °C	-40 +80 °C	16.67 kΩ
	350 mA	40 V	215 V	75.3 W	80.3 W	356 mA	95 °C	-40 +80 °C	14.29 kΩ
LCI 75/100-700/250 flexC NF lp EXC3	400 mA	40 V	188 V	75.2 W	80.2 W	355 mA	95 °C	-40 +80 °C	12.50 kΩ
EXCS	450 mA	40 V	168 V	75.6 W	80.6 W	357 mA	95 °C	-40 +80 °C	11.11 kΩ
	500 mA	40 V	150 V	75.0 W	79.9 W	354 mA	95 ℃	-40 +80 °C	10.00 kΩ
	550 mA	40 V	136 V	75.0 W	79.6 W	349 mA	95 °C	-40 +80 °C	9.09 kΩ
	600 mA	40 V	125 V	74.8 W	79.6 W	353 mA	95 ℃	-40 +80 °C	8.33 kΩ
	650 mA	40 V	115 V	74.9 W	80.4 W	353 mA	95 ℃	-40 +80 °C	7.69 kΩ
	700 mA	40 V	107 V	75.0 W	79.6 W	349 mA	95 ℃	-40 +80 °C	short circuit (0 Ω)

 $^{^{\}scriptsize \textcircled{1}}$ Valid at max. output current setting at ta = 25 °C.

² Depending on the selected output current.

[®] The table only lists a number of possible operating points but does not cover each single point. The output current can be set within the total value range in 1-mA-steps.

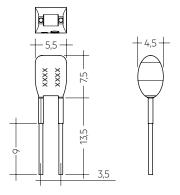
 $^{^{\}scriptsize \textcircled{\tiny 4}}$ Not compatible with I-SELECT (generation 1). Calculated resistor value.

[®] Output current is mean value.

 $^{^{\}circledR}$ Valid for immediate change of power supply type otherwise the starting time is valid.

SORIES

I-SELECT 2 PLUG PRE / EXC


Product description

- Ready-for-use resistor to set output current value
- Compatible with LED Driver featuring I-SELECT 2 interface; not compatible with I-SELECT (generation 1)
- Resistor is base insulated
- Resistor power 0.25 W
- Current tolerance ± 2 % additional to output current tolerance
- Compatible with LED Driver series PRE and EXC

Example of calculation for third party resistors

- $R [k\Omega] = 5 V / I_out [mA] \times 1000$
- E96 resistor value used
- Resistor value tolerance ≤ 1 %; resistor power ≥ 0.1 W; base insulation necessary
- When using a resistor value beyond the specified range, the output current will automatically be set to the minimum value (resistor value too big), respectively to the maximum value (resistor value too small)

Ordering data

Туре	Article number	Colour	Marking	Current	Resistor value	Packaging bag	Weight per pc.
I-SELECT 2 PLUG 125MA BL	28001101	Blue	0125 mA	125 mA	40.20 kΩ	10 pc(s).	0.001 kg
I-SELECT 2 PLUG 150MA BL	28001102	Blue	0150 mA	150 mA	33.20 kΩ	10 pc(s).	0.001 kg
I-SELECT 2 PLUG 175MA BL	28001103	Blue	0175 mA	175 mA	28.70 kΩ	10 pc(s).	0.001 kg
I-SELECT 2 PLUG 200MA BL	28001104	Blue	0200 mA	200 mA	24.90 kΩ	10 pc(s).	0.001 kg
I-SELECT 2 PLUG 225MA BL	28001105	Blue	0225 mA	225 mA	22.10 kΩ	10 pc(s).	0.001 kg
I-SELECT 2 PLUG 250MA BL	28001106	Blue	0250 mA	250 mA	20.00 kΩ	10 pc(s).	0.001 kg
I-SELECT 2 PLUG 275MA BL	28001107	Blue	0275 mA	275 mA	18.20 kΩ	10 pc(s).	0.001 kg
I-SELECT 2 PLUG 300MA BL	28001108	Blue	0300 mA	300 mA	16.50 kΩ	10 pc(s).	0.001 kg
I-SELECT 2 PLUG 325MA BL	28001109	Blue	0325 mA	325 mA	15.40 kΩ	10 pc(s).	0.001 kg
I-SELECT 2 PLUG 350MA BL	28001110	Blue	0350 mA	350 mA	14.30 kΩ	10 pc(s).	0.001 kg
I-SELECT 2 PLUG 375MA BL	28001111	Blue	0375 mA	375 mA	13.30 kΩ	10 pc(s).	0.001 kg
I-SELECT 2 PLUG 400MA BL	28001112	Blue	0400 mA	400 mA	12.40 kΩ	10 pc(s).	0.001 kg
I-SELECT 2 PLUG 425MA BL	28001251	Blue	0425 mA	425 mA	11.80 kΩ	10 pc(s).	0.001 kg
I-SELECT 2 PLUG 450MA BL	28001113	Blue	0450 mA	450 mA	11.00 kΩ	10 pc(s).	0.001 kg
I-SELECT 2 PLUG 475MA BL	28001252	Blue	0475 mA	475 mA	10.50 kΩ	10 pc(s).	0.001 kg
I-SELECT 2 PLUG 500MA BL	28001114	Blue	0500 mA	500 mA	10.00 kΩ	10 pc(s).	0.001 kg
I-SELECT 2 PLUG 525MA BL	28001960	Blue	0525 mA	525 mA	9.53 kΩ	10 pc(s).	0.001 kg
I-SELECT 2 PLUG 550MA BL	28001115	Blue	0550 mA	550 mA	9.09 kΩ	10 pc(s).	0.001 kg
I-SELECT 2 PLUG 600MA BL	28001116	Blue	0600 mA	600 mA	8.25 kΩ	10 pc(s).	0.001 kg
I-SELECT 2 PLUG 650MA BL	28001117	Blue	0650 mA	650 mA	7.68 kΩ	10 pc(s).	0.001 kg
I-SELECT 2 PLUG 700MA BL	28001118	Blue	0700 mA	700 mA	7.15 kΩ	10 pc(s).	0.001 kg
I-SELECT 2 PLUG MAX BL	28001099	Blue	MAX	MAX	0.00 kΩ	10 pc(s).	0.001 kg

1. Standards

EN 55015

EN 61000-3-2

EN 61000-3-3

EN 61347-1

EN 61347-2-13

EN 61547

EN 62384

According to EN 50172 for use in central battery systems

According to EN 60598-2-22 suitable for emergency lighting installations

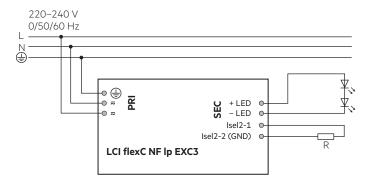
EN 61000-4-4

EN 61000-4-5

2. Thermal details and lifetime

2.1 Expected lifetime

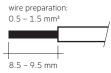
Туре	Output current	ta	50 °C	55 °C	60 °C	65 ℃	70 °C	75 °C	80 °C
LCI 75/100-700/250 fixC NF sl EXC	< 200 mA	tc	60 °C	65 ℃	70 °C	75 °C	80 °C	85 °C	90 ℃
		Lifetime	> 120,000 h	> 100,000 h					
	200 - < 300 mA	tc	60 ℃	65 ℃	70 °C	75 ℃	80 °C	85 °C	90 ℃
		Lifetime	> 120,000 h	> 120,000 h	> 120,000 h	> 120,000 h	> 100,000 h	> 65,000 h	> 50,000 h
	≥ 300 mA	tc	65 °C	70 °C	75 ℃	80 °C	85 °C	90 °C	95 ℃
		Lifetime	> 120,000 h	> 120,000 h	> 120,000 h	> 120,000 h	> 90,000 h	> 60,000 h	> 45,000 h


The LED Driver is designed for a lifetime stated above under reference conditions and with a failure probability of less than 10 %.

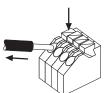
The relation of tc to ta temperature depends also on the luminaire design.

If the measured to temperature is approx. 5 K below to max., ta temperature should be checked and eventually critical components (e.g. ELCAP) measured. Detailed information on request.

3. Installation / wiring


3.1 Circuit diagram

3.2 Wiring type and cross section


Solid wire with a cross section of $0.5 - 1.5 \text{ mm}^2$. Strip 8.5 - 9.5 mm of insulation from the cables to ensure perfect operation of terminals.

LED module/LED Driver/supply

3.3 Loose wiring

Press down the "push button" and remove the cable from front.

3.4 Wiring guidelines

- The cables should be run separately from the mains connections and mains cables to ensure good EMC conditions.
- The LED wiring should be kept as short as possible to ensure good EMC.
 The max. secondary cable length is 2 m (4 m circuit), this applies for LED output as well as for I-SELECT 2.
- · Secondary switching is not permitted.
- The LED Driver has no inverse-polarity protection on the secondary side.
 Wrong polarity can damage LED modules with no inverse-polarity protection.
- Wrong wiring of the LED Driver can lead to malfunction or irreparable damage.
- With mains transients of 4 kV can voltage peaks up to 4 kV occur against PE at the output of the LED Driver. This has to be considered concerning the dielectric strength of the LED module (insulation against PE).
- To avoid the damage of the Driver, the wiring must be protected against short circuits to earth (sharp edged metal parts, metal cable clips, louver, etc.).

3.5 Hot plug-in

Hot plug-in is not supported due to residual output voltage of > 0 V. If a LED load is connected the device has to be restarted before the output will be activated again.

This can be done via mains reset.

3.6 Earth connection

The earth connection is conducted as protection earth (PE). The LED Driver can be earthed via earth terminal or metal housing. If the LED Driver will be earthed, protection earth (PE) has to be used. There is no earth connection required for the functionality of the LED Driver. Earth connection is recommended to improve following behaviour:

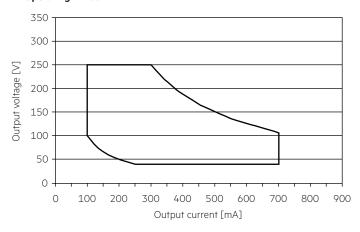
- Electromagnetic interferences (EMI)
- LED glowing at stand-by
- Transmission of mains transients to the LED output

In general it is recommended to earth the LED Driver if the LED module is mounted on earthed luminaire parts respectively heat sinks and thereby representing a high capacity against earth.

3.7 I-SELECT 2 resistors connected via cable

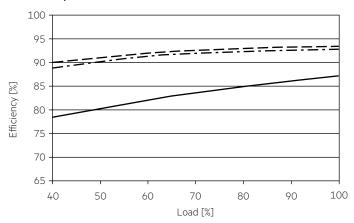
For details see:

 $http://www.tridonic.com/com/en/download/technical/LCA_PRE_LC_EXC_ProductManual_en.pdf. \\$

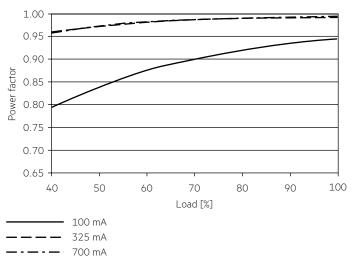

3.8 Replace LED module

- 1. Mains off
- 2. Remove LED module
- 3. Wait for 30 seconds
- 4. Connect LED module again

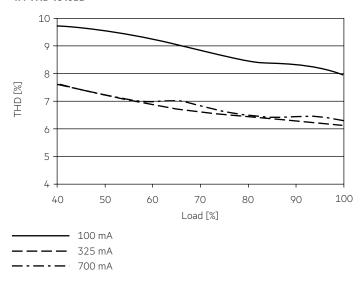
Hot plug-in or secondary switching of LEDs is not permitted and may cause a very high current to the LEDs.


4. Electrical values

4.1 Operating window



Make sure that the LED Driver is operated within the given window under all operating conditions.


4.2 Efficiency vs load

4.3 Power factor vs load

4.4 THD vs load

100 % load corresponds to the max. output power (full load) according to the table on page 2.

4.5 Maximum loading of automatic circuit breakers

Automatic circuit breaker type	C10	C13	C16	C20	B10	B13	B16	B20	Inrus	h current
Installation Ø	1.5 mm ²	1.5 mm ²	2.5 mm ²	4 mm ²	1.5 mm ²	1.5 mm ²	2.5 mm ²	4 mm ²	l max	time
LCI 75/100-700/250 flexC NF lp EXC3	33	41	53	66	20	25	32	40	5 A	1,000 µs

This are max. values! Please consider not to exceed the maximum current of the circuit breaker.

Calculation uses typical values from ABB series S200 as a reference.

Actual values may differ due to used circuit breaker types and installation environment.

4.6 Harmonic distortion in the mains supply (at 230 V / 50 Hz and full load) in %

	THD	3.	5.	7.	9.	11.
LCI 75/100-700/250 flexC NF lp EXC3	< 10	< 10	< 5	< 5	< 3	< 3

4.7 Insulation matrix

	Mains	LED	one4all	Functional earth
Mains	-	-	-	•
LED	-	-	-	•
one4all	-	-	-	-
Functional earth	•	•	-	_

[•] Represents basic insulation

5. Software / Programming / Interfaces

5.1 Software / programming

With appropriate software and interface different functions can be activated and various parameters can be configured in the LED Driver. The Driver supports the following software and interfaces:

Software / hardware for configuration:

companionSUITE (deviceGENERATOR, deviceCONFIGURATOR, deviceANALYSER)

Interfaces for data transfer:

• NFC

5.2 Nearfield communication (NFC)

The NFC Interface allows wireless communication with the LED Driver. This interface offers the option to write configuration and to read configuration, errors and events with the companionSUITE.

A correct communication between the LED Driver and the NFC antenna

A correct communication between the LED Driver and the NFC antenna can only be guaranteed if the antenna is placed directly on the Driver.

Any material placed between the LED Driver and the NFC antenna can cause a deterioration of the communication quality.

After programming the device via NFC power up the device one time for one second till the deviceANALYSER can read out the parameters.

We recommend the use of following NFC antenna: www.tridonic.com/nfc-readers

NFC is complied with ISO/IEC 15963 standard.

^{• •} Represents double or reinforced insulation

6. Functions

O companionSUITE:

NFC

The companionSUITE with deviceGENERATOR, deviceCONFIGURATOR and deviceANALYSER is available via our WEB page: https://www.tridonic.com/com/en/products/companionsuite.asp

Icon	Function	NFC
	OEM Identification	0
	OEM GTIN	0
mA .	LED current	0
才%	DC level	0
0	Intelligent temperature guard (ITG)	0
$\overline{\Theta}$	IVG	0

6.1 LED current

The LED output current must be adapted to the connected LED module. The value is limited by the current range of the respective device.

The priority for current adjustment methods is I-SELECT 2 (highest priority) and NFC (lowest priority).

6.2 DC operation

In emergency light systems with a central battery supply the DC recognition function uses the input voltage to detect if emergency mode is present.

The LED Driver then automatically switches to DC mode.

Without DC recognition different and more complex solutions would have to be applied in order to detect emergency mode.

DC recognition is integrated in the device as standard.

No additional commissioning is necessary for activation.

The LED Driver is designed to operate on DC voltage and pulsed DC voltage.

Light output level in DC operation: 100 %, $EOF_i = 0.98$

The voltage-dependent input current of Driver incl. LED module is depending on the used load.

The voltage-dependent no-load current of Driver (without or defect LED module) is for:

AC: < 40 mA DC: < 4 mA

6.3 Intelligent Temperature Guard (ITG)

The intelligent temperature guard protects the LED Driver from thermal overheating by reducing the output power or switching off in case of operation above the thermal limits of the luminaire or ballast. Depending on the luminaire design, the ITG operates at about 5 to 10 °C above to temperature.

If temperature threshold values are exceeded, the LED output current is limited

These limits can be adjusted using the programming software. Even the current ITG temperature in the device can be read out. With this function, the sensitivity of the temperature control can be adjusted.

7. Protective features

7.1 Overtemperature protection

The LED Driver is protected against temporary thermal overheating. If the temperature limit is exceeded the output current of the LED module(s) is reduced. The temperature protection is activated above tc max. The activation temperature differs depending on the LED load. On DC operation this function is deactivated to fulfill emergency requirements.

7.2 Short-circuit behaviour

In case of a short-circuit at the LED output the LED output is switched off.

After restart of the LED Driver the output will be activated again.

The restart can be done via mains reset.

The device will recover automatically.

7.3 No-load operation

The LED Driver will not be damaged in no-load operation. The output will be deactivated and is therefore free of voltage. If a LED load is connected, the device has to be restarted before the output will be activated again.

7.4 Overload protection

If the maximum load is exceeded by a defined internal limit, the LED Driver turns off the LED output. After restart of the LED Driver the output will be activated again.

The restart can be done via mains reset.

The device will recover automatically.

8. Miscellaneous

8.1 Insulation and electric strength testing of luminaires

Electronic devices can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an insulation test with $500\,V_{\,DC}$ for 1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal.

The insulation resistance must be at least $2\,M\Omega$.

As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with 1500 V $_{AC}$ (or 1.414 x 1500 V $_{DC}$). To avoid damage to the electronic devices this test must not be conducted.

8.2 Conditions of use and storage

Humidity: 5 % up to max. 85 %,

not condensed

(max. 56 days/year at 85 %)

Storage temperature: -40 °C up to max. +80 °C

The devices have to be acclimatised to the specified temperature range (ta) before they can be operated.

The LED Driver is declared as inbuilt LED controlgear, meaning it is intended to be used within a luminaire enclosure.

If the product is used outside a luminaire, the installation must provide suitable protection for people and environment (e.g. in illuminated ceilings).

8.3 Maximum number of switching cycles

All LED Driver are tested with 50,000 switching cycles. The actually achieved number of switching cycles is significantly higher.

8.4 Additional information

Additional technical information at $\underline{www.tridonic.com} \rightarrow \text{Technical Data}$

Lifetime declarations are informative and represent no warranty claim. No warranty if device was opened.

www.tridonic.com