TRIDONIC

Module LLE 24mm 400lm LV DAISY ADV1 (LEDIL)

Modules LLE advanced (DAISY)

Product description

- Ideal for linear lights
- 4 terminals for parallel wiring
- Push terminals for quick and simple wiring of LED module to LED module
- Design for LEDiL DAISY 4x1 portfolio
- Long lifetime: 72,000 hours
- 5 years guarantee (conditions at www.tridonic.com)

Optical properties

- $\bullet\,$ Colour temperatures 3,000 K and 4,000 K
- Useful luminous flux 434 lm at Irated and tp = 25 °C
- $\bullet\,$ Efficacy of the LED module 197 lm/W at Irated and tp = 25 °C
- High colour rendering index CRI > 80
- High colour consistency (MacAdam 3)[®]
- Small luminous flux tolerances

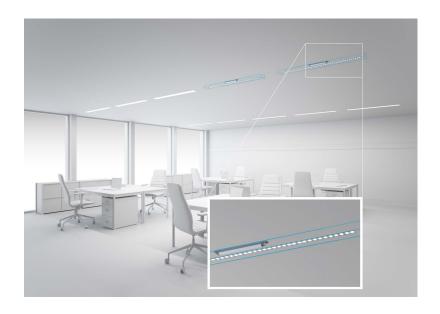
Mechanical properties

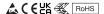
- Module dimension 24 x 140 mm
- Simple installation of lens and module with M3 screws

System solution

 Combine Tridonic`s LED modules and dimmable drivers to achieve an outstanding system efficacy (configuration possible via https://setbuilder.tridonic.com/)

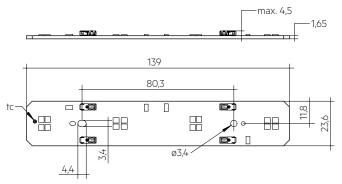
Standards, page 3


Colour temperatures and tolerances, page 7



LLE 24x140mm 400lm LVD ADV1

Module with LEDiL DAISY lens system



Module LLE 24mm 400lm LV DAISY ADV1 (LEDiL)

Modules LLE advanced (DAISY)

Technical data Beam characteristic 120° -40 ... +65 °C Ambient temperature range tp rated 65 °C 80 °C Irated for 400 lm 100 mA Imax for 400 Im 350 mA Max. permissible LF current ripple for 400 lm 440 mA Max. permissible peak current for 400 lm 600 mA / max. 10 ms Max. working voltage for insulation $\mathsf{SELV}^{@}$ < 60 V Insulation test voltage 0.5 kV CTI of the printed circuit board ≥ 600 ESD classification severity level 4 Risk group (IEC 62471)[®] RG1 Classification acc. to IEC 62031 Built-in IP00 Type of protection Lumen maintenance L70B50 72,000 h Guarantee 5 years

LLE 24x140mm 400lm LVD ADV1

Ordering data

Туре	Article number	Colour temperature	Packaging carton [®]	Weight per pc.
LLE 24x140mm 400lm 830 LVD ADV1	89603460	3,000 K	108 pc(s).	0.011 kg
LLE 24x140mm 400lm 840 LVD ADV1	89603461	4,000 K	108 pc(s).	0.011 kg

[®] Orders only in full carton quantities.

Specific technical data

Type [®]	Photo- metric code	Useful luminous flux at tp = 25 °C [®]	Expected luminous flux at tp rated®	Typ. forward current	Min. forward voltage at tp rated	Max. forward voltage at tp = 25 °C	Power consumption Pon at tp = 25 °C®	Efficacy of the module at tp = 25 °C	Expected efficacy of the module at tp rated	Colour rendering index CRI
LLE 24x140mm 400lm – Operating n	node NM at	100 mA								
LLE 24x140mm 400lm 830 LVD ADV1	830/359	411 lm	391 lm	100 mA	20.4 V	22.2 V	2.2 W	187 lm/W	186 lm/W	> 80
LLE 24x140mm 400lm 840 LVD ADV1	840/359	434 lm	414 lm	100 mA	20.4 V	22.2 V	2.2 W	197 lm/W	197 lm/W	> 80
LLE 24x140mm 400lm – Operating n	node HO at	200 mA								
LLE 24x140mm 400lm 830 LVD ADV1	830/359	-	744 lm	200 mA	21.9 V	22.8 V	-	-	169 lm/W	> 80
LLE 24x140mm 400lm 840 LVD ADV1	840/359		789 lm	200 mA	21.9 V	22.8 V	-	-	180 lm/W	> 80
LLE 24x140mm 400lm - Operating n	node HO at	300 mA								
LLE 24x140mm 400lm 830 LVD ADV1	830/359	-	1,106 lm	300 mA	22.5 V	23.4 V	-	-	165 lm/W	> 80
LLE 24x140mm 400lm 840 LVD ADV1	840/359	-	1,164 lm	300 mA	22.5 V	23.4 V	-	_	174 lm/W	> 80

^① Integral measurement over the complete module.

 $^{^{\}scriptsize{\textcircled{2}}}$ If mounted with M3 screws in combination with LEDiL DAISY lens.

[®] Measured at operating mode HO.

 $^{^{\}scriptsize \textcircled{\tiny 6}}$ HE ... high efficiency, NM ... nominal mode, HO ... high output.

 $^{^{\}circledR}$ Tolerance of useful light flux - 0 % / + 15 % . Measurement uncertainty ± 10 % .

 $^{^{\}circledR}$ Tolerance of expected light flux - 0 % / + 15 %. Measurement uncertainty ± 10 %. Based on calculation.

 $^{^{\}scriptsize \textcircled{\tiny{1}}}$ Tolerance of power consumption Pon ± 10 %. Measurement uncertainty ± 5 %.

1. Standards

IEC 62031 IEC 62471 IEC 61000-4-2 IEC 62778 IEC 61547

1.1 Photometric code

Key for photometric code, e. g. 830 / 349

1 s1	digit	2 nd + 3 rd digit	4 th digit	5 th digit	61	^h digit
Code	CRI	Colour	MacAdam	after 25%	Luminous flu: of the lifetime Code	x after 25% (max.6000h) Luminous flux
7	70 – 79	temperature in	initial	of the	7	≥ 70 %
8	80 - 89	Kelvin x 100		lifetime	8	≥ 80 %
9	≥90			(max.6000h)	9	≥ 90 %

1.2 Energy classification

Туре	Colour tempera- ture	Forward current	Energy classifi- cation	Energy consumption
LLE 24x140mm 400lm 830 LVD ADV1	3,000 K	100 mA	С	3 kWh / 1,000 h
LLE 24x140mm 400lm 840 LVD ADV1	4,000 K	100 mA	С	3 kWh / 1,000 h

Energy label and further information at www.tridonic.com in the certificates tab of the corresponding product page and at the EPREL data base https://eprel.ec.europa.eu/

2. Thermal details

2.1 tc point, ambient temperature and lifetime

The temperature at tp reference point is crucial for the light output and lifetime of a LED product.

For LLE a tp temperature of $65\,^{\circ}$ C has to be complied in order to achieve an optimum between heat sink requirements, light output and lifetime.

Compliance with the maximum permissible reference temperature at the tc point must be checked under operating conditions in a thermally stable state. The maximum value must be determined under worst-case conditions for the relevant application.

The tc and tp temperature of LED modules from Tridonic are measured at the same reference point.

2.2 Storage and humidity

Storage temperature	-40 +80 °C

Operation only in non condensing environment.

Humidity during processing of the module should be between 30 to 70 %.

2.3 Heat sink values

LLE 24x140mm 400lm LVD ADV1

ta	tp	Forward current	R th, hs-a	Cooling area
25°C	65°C	100 mA	self	cooling
25°C	65°C	300 mA	14.3 K/W	47 cm ²
35°C	65°C	100 mA	self	cooling
35°C	65°C	300 mA	10.7 K/W	62 cm ²
40 °C	65°C	100 mA	self	cooling
40 °C	65°C	300 mA	8.9 K/W	74 cm ²
45 °C	65°C	100 mA	self	cooling
45°C	65°C	300 mA	7.1 K/W	93 cm²
50 °C	65°C	100 mA	17.1 K/W	39 cm²
50 °C	65°C	300 mA	5.3 K/W	124 cm ²

Notes

The actual cooling surface can differ because of the material, the structural shape, outside influences and the installation situation. Depending on the heat sink a heat conducting paste or heat conducting film might be necessary to keep the specified tp temperature.

3. Installation / wiring

3.1 Electrical supply/choice of LED driver

LLE modules from Tridonic are not protected against overvoltages, overcurrents, overloads or short-circuit currents. Safe and reliable operation can only be guaranteed in conjunction with a LED driver which complies with the relevant standards. The use of LED driver from Tridonic in combination with LLE modules guarantees the necessary protection for safe and reliable operation.

If a LED driver other than Tridonic is used, it must provide the following protection:

- Short-circuit protection
- Overload protection
- Overtemperature protection

LLE modules must be supplied by a constant current LED driver. Operation with a constant voltage LED driver will lead to an irreversible damage of the module.

Wrong polarity can damage the LLE.

With parallel wiring tolerance-related differences in output are possible (thermal stress of the module) and can cause differences in brightness.

If a wire breaks or a complete module fails then the current passing through the other module increases. This may reduce its life considerably.

The max permissible output current of the LED driver for parallel wiring is 3 $\rm A.$

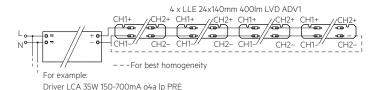
For parallel wiring only modules of the same forward voltage bin may be used.

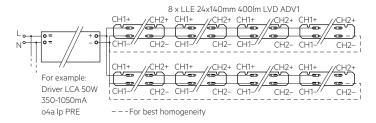
The forward voltage bin is indicated on the label of the module.

89603460	LLE 24x140mm	400lm 830 LVD	ADV1	3000K
09/2019	12345678	1234	AY34	Tc:80°C
Irated/max=	100/350mADC	$V_{f,typ}=$	21,3/22,7V	CoO: AT

The 24x1120mm module is not designed for parallel wiring. Due to the module design only 280 and 560 mm modules can be combined with each other.

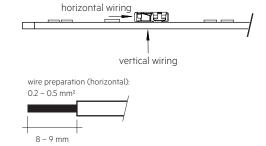
LLE have to be operated with SELV LED drivers.

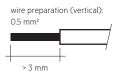



LLE are basic insulated up to 60 V SELV (if mounted with M3 screws in combination with LEDiL DAISY lens) against ground and can be mounted directly on earthed metal parts of the luminaire. If the max. output voltage of the LED driver (also against earth) is above 60 V SELV, an additional insulation between LED module and heat sink is required (for example by insulated thermal pads) or by a suitable luminaire construction.

3.2 Wiring

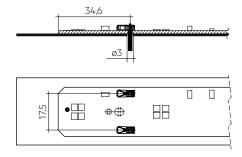
Wiring examples


Туре	Max. number with parallel wiring*
LLE 24x140mm 400lm LVD ADV1	7


^{*} with direkt chaining (without additional terminals).

3.3 Wiring type and cross section

For horizontal wiring use stranded wire of 0.5 mm^2 or solid wire from $0.2 \text{ to } 0.5 \text{ mm}^2$ (stripping length 8 - 9 mm) and for vertical wiring solid wire with 0.5 mm^2 (stripping length > 3 mm).


Only one wire per terminal allowed.

Removing the wires through twist and pull.

Cut-out for vertical wiring:

3.4 Mounting instruction

None of the components of the LLE (substrate, LED, electronic components etc.) may be exposed to tensile or compressive stresses.

Max. torque for fixing: 0.5 Nm.

The LED modules are mounted onto a heat sink with min. 2 screws per module.

Only touch the module at the edge to separate the modules (see marking below).

Chemical substance may harm the LED module. Chemical reactions could lead to colour shift, reduced luminous flux or a total failure of the module caused by corrosion of electrical connections.

Materials which are used in LED applications (e.g. sealings, adhesives) must not produce dissolver gas. They must not be condensation curing based, acetate curing based or contain sulfur, chlorine or phthalate.

Avoid corrosive atmosphere during usage and storage.

3.5 EOS/ESD safety guidelines

The device / module contains components that are sensitive to electrostatic discharge and may only be installed in the factory and on site if appropriate EOS/ESD protection measures have been taken. No special measures need be taken for devices/modules with enclosed casings (contact with the pc board not possible), just normal installation practice. Please note the requirements set out in the document EOS / ESD guidelines (Guideline_EOS_ESD.pdf) at: http://www.tridonic.com/esd-protection

4. Lifetime

4.1 Lifetime, lumen maintenance and failure rate

The light output of an LED module decreases over the lifetime, this is characterized with the L value.

L70 means that the LED module will give 70 % of its initial luminous flux. This value is always related to the number of operation hours and therefore defines the lifetime of an LED module.

As the L value is a statistical value and the lumen maintenance may vary over the delivered LED modules.

The B value defines the amount of modules which are below the specific L value, e.g. L70B10 means 10 % of the LED modules are below 70 % of the initial luminous flux, respectively 90 % will be above 70 % of the initial value. In addition the percentage of failed modules (fatal failure) is characterized by the C value.

The F value is the combination of the B and C value. That means for F degradation and complete failures are considered, e.g. L70F10 means 10 % of the LED modules may fail or be below 70 % of the initial luminous flux.

4.2 Lumen maintenance for LLE 24mm LVD ADV1

LLE 24x140mm LVD ADV1

Forward	tp						
current	tempera-	L90 / F10	L90 / F50	L80 / F10	L80 / F50	L70 / F10	L70 / F50
current	ture						
	40 °C	43,000 h	59,000 h	>75,000 h	>75,000 h	>75,000 h	>75,000 h
	45 °C	42,000 h	57,000 h	>75,000 h	>75,000 h	>75,000 h	>75,000 h
	50 °C	41,000 h	55,000 h	>75,000 h	>75,000 h	>75,000 h	>75,000 h
	55 °C	40,000 h	54,000 h	>75,000 h	>75,000 h	>75,000 h	>75,000 h
100 mA	60 °C	39,000 h	52,000 h	>75,000 h	>75,000 h	>75,000 h	>75,000 h
	65 °C	38,000 h	50,000 h	>75,000 h	>75,000 h	>75,000 h	>75,000 h
	70 °C	38,000 h	49,000 h	>75,000 h	>75,000 h	>75,000 h	>75,000 h
	75 °C	37,000 h	47,000 h	74,000 h	>75,000 h	>75,000 h	>75,000 h
	80 °C	36,000 h	46,000 h	73,000 h	>75,000 h	>75,000 h	>75,000 h

4.3 Switching capability

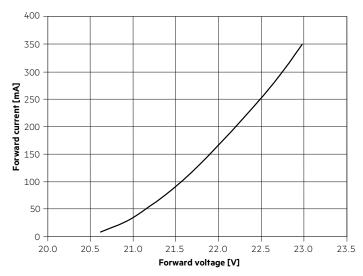
100,000 cycles

Tridonic test according to IEC 62717 CI 10.3.3 30 s on / 30 s off at Imax

5. Electrical values

5.1 Declaration of electrical parameters

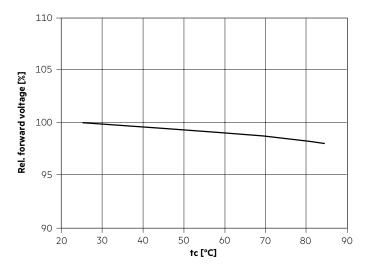
Irated ... Nominal operating current the module is designed for.


Imax ... Max. permissible continuous operating current incl. The tolerances of the LED driver.

Max. permissible LF current ripple ... Max. output current of the LED driver incl. Tolerances and LF current ripple must not exceed this value.

Max. permissible peak current ... The max. output peak current of the LED driver must not exceed this value.

5.2 Typ. forward voltage vs. forward current


LLE 24x140mm 400lm 8xx LVD ADV1

The diagrams are based on statistic values.

The real values can be different.

5.3 Forward voltage vs. tc temperature

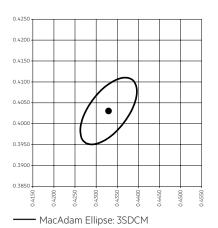
The diagrams are based on statistic values.

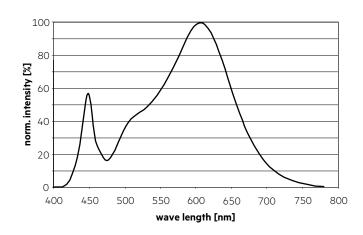
The real values can be different.

6. Photometric characteristics

6.1 Coordinates and tolerances according to CIE 1931

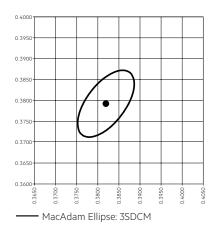
The specified colour coordinates are measured integral after a settling time of 100 ms. The current impuls depends on the module type.

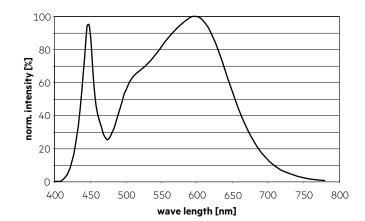

The ambient temperature of the measurement is ta = 25 °C.


The measurement tolerance of the colour coordinates are \pm 0.01.

Module type	Current impulse
LLE 24x140mm 400lm xxx LVD ADV1	130 mA

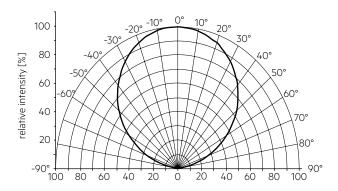
3,000 K


	x0	yO
Centre	0.4338	0.4030



4,000 K

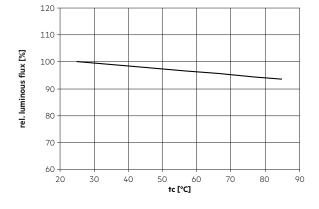
	x0	yO
Center	0.3818	0.3797



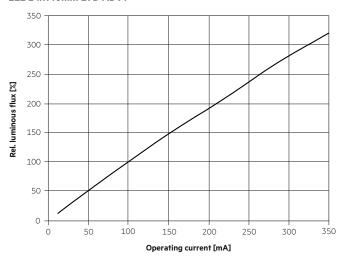
LED linear / area

6.2 Light distribution

The optical design of the LLE product line ensures optimum homogeneity for the light distribution.



The colour temperature is measured integral over the complete module. The single LED light points can have deviations in the colour coordinates within MacAdam 5.


To ensure an ideal mixture of colours and a homogeneous light distribution a suitable optic (e. g. PMMA diffuser) and a sufficient spacing between module and optic (typ. 4 cm) should be used.

6.3 Relative luminous flux vs. tc temperature

6.4 Relative luminous flux vs. operating current

LLE 24x140mm LVD ADV1

The diagrams are based on statistic values. The real values can be different.

7. Miscellaneous

7.1 Additional information

Additional technical information at <u>www.tridonic.com</u> \rightarrow Technical Data

Guarantee conditions at $\underline{www.tridonic.com} \rightarrow Services$

Lifetime declarations are informative and represent no warranty claim.

www.tridonic.com